令00=1,fx=i=0∑nix×yi 。
则有:
fx+(n+1)x×yn+1=i=0∑n(i+1)n×yi+1+0=i=0∑n[yi+1(j=0∑xCxj×ij)]=i=0∑nj=0∑xyi+1ijCxj=y×j=0∑x(i=0∑nij×yi)=y×j=0∑xCxjfj
∴fj=((n+1)x×yn+1−y×j=0∑xCxjfj)×(y−1)−1[y=1]
此时,若y==1,则有:
(n+x)x×yn+1(n+x)x+1×yn+1fx=y×j=0∑x−2Cxjfj+y×Cxx−1×fx−1令x=x+1,得:=y×j=0∑x−1Cxjfj+y×Cx+1x×fx进而得:=[(n+x)x+1×yn+1−j=0∑x−1yCxjfj]×[y×Cx+1x]−1